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ABSTRACT

An 2lgorithm is described for generating two-dimensional, visible-
line projections of three-dimensional objects that are bounded by
patches of quadric surfaces.

The main task of the algorithm is the calculation of intersections
between quadric surfaces. A parameterization scheme is used. Each
guadric-surface intersection curve (QSIC) is represented as a set of
coefficients and parameter limits. Each value of the parameter repre-
sents at most two points, and these mey easily be distinguished. This
scheme can find the coordinates of points of even quartic (fourth-order)
intersection curves, using equations of no more than second order.

Methods of parameterization for each type of QSIC are discussed,

as well as the problems of surface bounding and hidden-surface removal.
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I. INTRODUCTION

1.1 General

This report describes an algorithm for the computer generation of
orthographic as well as perspective projections of three-dimensioral
objects whose surfaces are made up of segments of quadric surfaces, 2lso
known as quadric patches.

There are now many algorithms for generating pictures of soclid
objects whose surfaces consist of planar pclygons. A polygon is a seg-
ment of a first-order surface (plane) bounded by other first-order
surfaces.

The Braid algorithm [Braid 1975] extends this to allow also cylin-
ders and parts of cylinders.- Cylinders are quadric surfaces.

This paper is based on the Woon algorithm [Woon 1970 end Wocn-
Freeman 1971], which processes second-order (gquadric) surfaces bounded
by second-order surfaces. Quadric surfaces include such objects as
spheres, cylinders, cones, ellipsoids and hyperbolic paraboloids. They
are not too complex mathematically.

An important advantage of using quadric patches is that many
objects (especially man-made ones) can be more precisely modelled by a
small number of quadric patches than by a large set of small polygons.

Another advantage is that shaded pictures can be made with better
control over such effects as mach banding and specular reflection

(Phong 1975].
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Previous quadric patch algorithms, such as [Mahl 1972] and
[Weiss 1966], as well as the Woon algorithm, become laborious when
solving for the intersection of two quadric surfaces. This is a fourth-
order problem, and there is no easy method for finding the roots of a
fcurth~order equation, or even merely determining whether there are any
real roots.

The algorithm presented here reduces each fourth-order problem into
a second-order provblem. The algorithm uses a paresmetric representation.
Every point on the intersection of two quadric surfaces is determined
uniquely by a numerical parameter and, in many (but not all) cases, by
a Boolean sign parameter. Since the fourth-order quadric surface inter-
section curves (QSICs) can be represented parametrically, the computer

memcry need only store about a score of numbers to represent a QSIC,

rather than stcoring some lengthy point-by-point description for each QSIC.

1.2 The Woon Algorithm

Since the Wocn algorithm is not well known, and since it forms a
basis of this algorithm, the Weon algorithm will be presented first.

For each object, the input data for the Woon algorithm consists of
the surface eguations, surface bounds, surface intersections, and
vertices. Once an object is specified, the user may ask for different
views of the object, representing different locaticns of the vantage
point. Pictures may te generated in either orthographic or perspective

projection, and with the hidden lines displayed, dashed, or suppressed.

&
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For each surface the user must specify the fcllowing:

a) The equation of the surface. This is expressed in terms of the ten

ccefficients of the eguation:

alx,y,2) =qgx* +qy? +qz2 +qxy + qyz
1 2 3 b -4

=
~r

g2+ qgx* R AN =0
5 QE* 9y *4q q, (

9
The quadric surface divides the three-dimensional space into two
open regions: the exterior, in which q(x,v,z)>0; and the interior, in

which q(x,y,2)<0. On the surface itself, q(x,y,z)=0.

b) The bounds of the surface. When using the Woon algorithm, one is

normally interested in only one connected segment of each surface. This
surface segment (the "quadric patch") is defined as the locus of pcints
on the surface satisfying a certain Boolean condition, which is specified
for each surface.

Each tound consists of another quadric surface, and a polarity
(# or =). If the pclarity is positive (+), the bound is satisfied (true)
only for points in the exterior of the bounding surface. If the polarity
is negative (-), the bound is satisfied only for points in the interior

£ the bounding surface.
Each set of bounds consists of one or more bounds. The set of

bounds is satisfied if and only if all bounds in the set are satisfied.

Zach patch has one or more sets of bounds. The patch is the locus of all 1

points on the surface satisfying at least one set of bounds. §

¢) The intersection cf the surface patch with other surface vaiches.

e

Woon distinguishes between planar surface interesections which lie in a
plane, and non-planar intersections which do not. He also distinguishes

between protrusive and recessive intersections.
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In addition to the above information, needed for each surface and
each surface intersection, the user must also specify all real vertices.
These are points where three or more intersection curves meet.

Quadric surfaces have the property, when viewed from certain view-
points, of "folding in back of themselves", such that part of the
quadric surface hides another part. The curve at which this happens,
the locus of points of tangency of rays from the vantage point to the
surface, is called a "limb". (Astronomers use this term for the visual
edge of a celestial body.)

The drawing produced by the Woon algorithm consists of edges.

There are two types: real edges, which are portions of the intersections
of quadric surfaces; virtual edges, which are portions of limbs.

Woon used a variation of the Loutrel algorithm [Loutrel 1970] to
determine whether or not points are visible. This requires that the
quadric patches be broken up into sections called faces. A patch which
folds in back of itself is divided into two or more faces by the limb.

A face is classified as a front face or a back face, depending

upon its orientation with respect to a viewer. Only front faces can be
visible. The orientation of the faces forming an edge, as well as the
protrusiveness or recessiveness of the edge, help determine whether the
edge is potentially visible.

The computation of pictures is divided into two parts. First, for
each object, the object-dependent gquantities are computed. These
include real edges, real vertices, and the partial classification of

edges.




Then, for each view of the object, the virtual edges and virtual
vertices (intersections of virtual edges and real edges) are ccmputed,
and finally the visible portions of each edge are found. To generate
the data for drawing the edges, the object must be rotated about three
angles: azimuth (), elevation (6), and twist (¥). For perspective
drawings, the distance from the origin to the viewpoint (D) and the
distance from the viewpoint to the picture piane (d) must be comsidered.

Woon suggests two methods for calculating points on a quadric sur-

face intersection curve (QSIC). If the QSIC is planar it will be a
conic secticn, and will be relatively easy to handle mathematically.
If the QSIC is not planar, then the curve may be computed as a series
of points, each within a specified distance from its neighbors. The
term "vector" is used for the directed line segment from one of these
points to the next.

Each vector has a dominant direction, either #*x, ty, or *z. For
the first vector in a curve, a guess is made as to its dominant direc-~
tion, and, if it takes the curve cut-of-bounds for its surfaces, then it
is rejected and another direction is selected. For subsequent vectors,
a2 strong hint as to the dominant direction is provided by the direction
of the last vector. Newton's method is then used to obtain the best
approximation to the actual direction.

Woon discusses a method of determining whether an intersection is
planar or not. This method is discussed and expanded upon later in this
paper.

The Loutrel algorithm [Loutrel 1970] is used by Woon to determine

whether or not an edge or point is visitle. Each point on an edge has




an order of invisibility, which is the number of front-faces between it

and the vantage point. The order of invisibility changes whenever the
line from the point to the vantage point intersects an edge of the hid-
ing surface.

Loutrel's original algorithm dealt only with polygonal faces. All
edges were straight-line segments; computing the intersecting points of
edge projections was exceedingly simple. This is not the case for the
projecticns of edges of quadric patches. These edges may be as high as
fourth-order curves. Woon specifies a very complicated algorithm for
determining these intersection points, as well as an algorithm for
propagating the order of invisibility from edge to edge. lNone of this

will be used in this report.

1.3 QUADRAW

Woon wrote a program called QUADRAW which implements a variation of
nis algorithm. For each object, QUADRAW requires information on scaling,
vector length, and tolerances.

or each surface, QUADRAW requires the following:

(1) The equation of the surface. (There are also some “"auxiliary sur-
faces" which are not part of the object, but bound other surfaces.)
(2) The bounds of the surface.

For each surface intersection, it requires:
(1) The two intersecting surfaces.
(2) The type (recessive or obtrusive).
(3) The planarity of %he intersecting surfaces and of the surface

intersection.




(4) If neither surface is planar, but the intersection is, the equa-
tion of the plane.
(5) Specification of each real vertex.

QUADRAW computes all curves in a piece-wise linear fachion. Each
QSIC is represented in memory by a series of small vectors. This
approach requires use of a computer with a large primary memory.

QUADRAW does not use Woon's variation of the Loutrel algorithm to
its fullest extent. It does use classification of edges to determine
which edges might be visible, but then uses a brute-force method to
compute edge visivility. This brute-force method works nicely, and is
used here, with some modification.

As each view is processed, the maxima and minima in the view-plane
are computed for each surface. For each potentially visible edge,
visibility is computed one point at a time. Each point is checked
agzinst each face whose extremz include the coordinates of the point.

If at least one face is found which hides the point, then the point is
invisible.

The testing to see whether a face hides a point on the edge (test
point) proceeds as follows:

The line of sight is computed from the vantage point to the test
point. The equation of the surface is reduced by considering only points
along the line of sight. This results in a second-order equation is most
cases, with first-order equations sometimes occurring. If the soluticn
of the equation yields two roots, one corresponds to a point on & back
face and may be discarded. If the remaining point is within bounds, then

it nides the test point, and no further test is needed for that point.




If there is no surface hiding the test point, then it is visible.
The method suggested later on in this report is a refinement of

this method.
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II. THE QUADRATIC FORM

The quadratic surface, as represented by eq. (1) is a quadratic
form [Woon 1970, Dresden 1930, Newman-Sproull 1973]. It may be repre-
sented in vector-matrix form, as follows:

Suppose the location of a point in 3-space is represented by the

vector: x = (x ¥ z 1). Eq. (1) then may be represented as follows:

a(x,y,2) =q(X) = (x y z 1){ a %q“ %qs %q? Cox
l i
Yaq g, coiiba o dha 1ot oy
b 2 S 8 i i (2)
) 1 )47 | !
2 ha g o S O e
6 5 3 9 i l
|
Yo' g Mg g 5
7 8 9 0 !
— ) o —
or, for short,
-> -> m 2 \
a(x) = x @ x” (3)

where Q is the 4 x U matrix in equation (2). Q is called the

discriminant of the quadric surface. Notice that Q@ is symmetric and

that, for any real non-zero scalar B, BQ is equivalent to Q, since they

describe the same surface. In this report the same symbol will cn

occasion be used for both a quadric surface as well as its discriminant.
An alternate form which will also be used is the following:

-

l

o]

AD
DB

]
=)
(ST I 5
A 4 om Q@
—
—

Q
=)

such that

2

a(x,y,z) = 4x? + By?+ Cz2 + 2Dxy + 2Eyz + 2 Fzx

4+ 26x + 2Hy + 2Jz + X =0 (S]
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The upper~left 3 x 3 principal sub-matrix of the discriminent con-

tains all the second-order terms.

diserimirnant”.

21 Yaau Yhas
Q = 1 1//,
a &q“ q, hqs
1 / 1
2 /2q Q
qs 2% 3
s —

This will be called the "sub-

o
w o
e |

td

(6)

23]
=
(@]

The sub-discriminant will always be represented by the sukscrint u.

The rank of the discriminant and the sub-discriminant are helpful

uadric surfaces.

formation described below.

These are invariant under the trans-

The rank of the discriminant is inveariant under

any nonsingulsr transformation, and that of the sub-discrimirnant is invariant

ransformations of the Discriminant

In setting up the description of an object, the untransformed space

will be the u-v-w space, and the transformed space will be the x-y-z

inverse of the other.

The transformation matrices will be F and

-

-
First let us consider the tranformation x = uf, where x = (x v z 1)

= £

ux uy

f £
al vx vy
»r =

o £

WX Twy

) )

X J

-
L
uz
oy ¥
(7)
2 0
wZ
$ i
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where F is a congruence transformation. The sub-discriminant, Fu, is
an orthogonal transformation. If Fu is orthonormal, then the determin-
ants of both Fu and F are unity.

Assume that T = F-l. ?; is the transpose of Fu if they are ortho-

normal. The lower-right element of T (the constant term) is unity.

Suppose the equation for the quadric surface P is:

->

APu = 0 in untransformed space, and (8a)
> T

x® x =0 in transformed space. (8v)

-> >
Using the transformation x = uF on equation (8b), we have:

P ET. Comparing this with equation (8a), we have

-
uF %z
P=FPF (9)
By pre- and post-multiplication, we have:

T Y 1P TLD, or P=-FPT (10)

=
av]
&
2
1]
r,’
xj
e,
1y

It is possible to break down the transformation into two parts:

rotaticn and translation. They may te applied repeatedly in any order.

The rotation matrix is:

T e
fvx 5 fv 0]
R = S (11)
ff T £ 0
0 0 0 ik
- i

The sub-dsicriminant is affected only by rotation. Rotation does

not affect the constant term, in the lower-right corner of the discrim-

inant.

oo~
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The translation matrix is:

0]

l-"
o
o

T = (12)

L_Gx Y GZ

Translation does not affect the sub-discriminant. The constant
term is affected only by translation.

A transformation can be formed by a rotation followed by a trans-
lation (F = RT), or by a translation followed by a rotation (F = TR).
T and R do not usually commute, just as rotation and translation to not

usually commute.

2.2 Canonical Form

t 1s possible to put the discriminant of a surface into a canoni-
cal form, in which the axes of the coordinate system are the axes of the
object, with non-zero diagonal elements of the discriminant being given
precedence. In finding the canonical form, one also finds the transform-
ation matrix which will transform the discriminant into its canonical
form.

In the following algorithm, the discriminant P is transfcrmed into
its canonical form Q by transformation matrix ¥. The matrix I is used
as an intermediate transformation. The operation '"«" means assignment,
as in a computer program.

a) First, a rotation is performed to diagonalize Pu. This rotaticn

Iy
is represented as the orthonormal matrix Tu. We have Qu + ?u Pu Fu.




S

SRl

If Pu has both non-zero and zero eigenvalues, the non-zero ones should
be placed towards the upper-left ccrner of Qu, and the zero ones towards
the lower-right.

¥ is then formed by augmenting ‘Fu:

e |0
ol IFA (13)
(o) (0 (ol Ak

T

We nave Q « F P T, and Q is of the form

AO0OOG
OBOH
cocCcJ
GHJK

b) We must now try to eliminate as many off-diagonal elements as possi-

ble. (Skip this step if A =B =C = 0.) We take I as:

(10 o o
6 61 ©
Ls CE
x ¥ S

where
§ = -G/A;
'S
67 = -H/B if B # 0, éy = QUi B =03
6Z = =T/C if C # O, Sz 20 18 C =0

We next have the "standard" transformstion:

P b T 37 (15a,b)




g

¢) At this point P is in one of four forms

If P is in the form:

A0O0OO
0BOO
00CO
000K

then it is already in canonical form.
If it is in the form:
A0QO
@B OO
000J
00JK
then it is a paraboloid. See (d), below, on how to eliminate the K
(constant) term.

hese forms:

ct

If it is in one of

AQ0O0O 000G
OO0O0H 000H
0004 0004Jd
OHJ K G HJ K

then we must remove all off-diagonal peirs except for the top- (lefi-)
nost one. This may be done as follows:

For the case on the left, one uses the transformation matrix:

0
K

[ ]
[l

Qx-S

o W

o AN W o

e OO
AY
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with K2 +82 =1 and

(] [@]

= 4
J
This remcves one of the off-diagonal peirs, making J=0. One then
uses the stardard transformation (15a,b).
For the case on the right, this must be done twice, once to remove
H, and once to remove J.
d) At this point, P has one off-diagonal element. If K = 0, we have

the canonical form. If not, we make a translation of the same form as

eq. (14) except with the following §'s:

8 = -K/26 12 G # 0, 8§ =01ifG=0;
Gy = -K/2H if H # O, Gy =40 4L H =0 (17)
5, = K/J ifJT#0, § =01if J = 0.

After applyin

|
ct
=
(1]

standard transformation (15a,b), we have the final

cancnical form for P, and the final transformation matrix F.

D

2.3 The Discriminant Form for Conic Sections

The conic sections are quadric curves, being also of *he quadratic
form. The discriminants of a conic are 3 x 3 matrices, and the sub-
discriminants are the 2 x 2 upper-left submatrices of the discriminants.
Other than the reduction in the number of dimensions, the conic sections
are completely analogous to quadric surfaces; the transformation matrices

ere slightly simpler:

e g K 8 0o
ux uy
F= £ £ 0 = -8 K 0 (18)
VX vy
) ) a [ e |
X N'g &y

where K2 s 82 =1
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2.4 Classification of Quadric Surfaces and Conic Sections

Tables I and II are guides to the classification of gquadric sur-
faces and conic sections, respectively. They are adapted, in part, from
a chart given by Dresden [Dresden 1930, p. 230].

One of the columns in these tables is the absolute value of a
signature. The signature of a matrix is the number of positive eigen-
values minus the numbter of negative eigenvalues.

In Table I, we use the following:

[0, 9, 95 %1 | e ds
i - B B E H
1 ) !
q = 21 T2z a3 Tes| B2 31y (19)
937 935 933 93y ¢ H# I K
Q1 w2 W3 Wy
‘ “
| Ri=TDE R
‘ u
| F B
2 = Renk(Q); @ = Rank(Q,); ik e e
3
T = Z oy ® A+ B+ C (21)
: i=1
3 3 .. Q
T w0y G qu = AR+ AC+BC-D* -8 oF? (22)
2 1=1 g=1+1 |%y1 Yy
3 L PR |
D . Z il lj = 7 +mK-G2_Hz-*2 (23)
2 4= gmien (Y1 Yy i




F_,,-,.,,..

S

% %ax Sy N
1 j=iel k=3¢l (Y1 Y45 Yk
Ui Yy ke

ABC + ACK + ABK + BCK - 2 (DEF + PGJ + DGH + EHJ)

- D2(C+K) - E?(A+X) - F2(B+K) - G?(B+C) - H2(A+C)

- J2(a+B)

(2L)

(25)




SINGULAR SURFACES

4

Planar

B

4

[
[

n N DN
n = PO

n

Non-planar

- 18Us

ik
Srate
F 2
B
<
3

NON-SINGULAR SURFACZS

0 denotes zero;

+ denotes positive;

s Conditions Real surface (Imeginary part in parens.)
0 INVALID
R Coincident Planes
0 Single Plane
1 D,>0 INVALID (Imag. Parallel Planes)
1 D, <0 Two Parallel Planes
0 T,<0 Two Intersecting Planes
2 T,>0 LINE (Two Intersecting Imaginary Planes)
Singular
1 Parabolic Cylinder
0 T,%0 Hyperbolic Cylinder
2 7,703 T133<O Elliptic Cylinder
2 T,>0; T,D,>0 INVALID (Imag. Cylinder)
1 o Ccne
3.8 POINT (Imsginary Cone)
d=h: ~wm=>5 ¢ det(Q ) =10

m=3 if det(Qu) 20

- denctes negative;

P

EEJ el s Conditions Surface
0 # 00 (T,<0) Hyperbolic Paraboloid
0 - 2 (T,>0) Elliptic Paraboloid
- - o P o Hyperboloid of One Sheet
= - &L a Hyperboloid of Two Sheets
& S 3 INVALID (Imaginary Ellipsoid)
-~ - 3 g Ellipsoid
ﬂ Conditions: a: T,>0; det(Qu) x T,<0; or: T,<0.
| B: T,>0; det(q ) x Ty>0.
,;
Table I. Guide for the Classification of Quadric Surplus

(adapted from Dresden 1930)




W1 Y s & DG
r-n D
Q = q o} o} = B B B Q = i
21 =22 =23 . D B
i G H K
1. %o I Sa3
d = Rank(Q); m = Rank(Qu); s = abs(Signature(Qu))
T = + = +
Tt TR B AN
2 ,3_ I c—.‘ 3 5‘1; 2
o SR ) 2L ] man B - D R
. i=l  J=itl ,
| g |q-j s qJJ
d oy Conditions Curve
Singular
I T o9 INVALID
i P SER Coincident Lines
28 000 Single Line
-~ R PR SN S (> (1) INVALID (Imag. Parallel Lines)
2
2 ey D<) Two Parallel Lines
e iQuf <0 Two Intersecting Lines
it k- iQul >0 POINT (Inter. Imag. Lines)
% e S | Parabola
S 20 ;Qul <0 Eyperbola
3 2 2 ]Qul >0; |a|T, <0 Ellipse
< e, lQul > 0, |Q|Tl >0 INVALID (Imaginary Ellipse)
Table II. Guide for the Classification of Conic Sections
(adapted from Dresden 1930)




ATION OF QUADRIC SURFACE INTERSECTIONS

nature of their quadric surface intersection

of Two Quadric Surfaces

Suppose we have two quadric surfaces, with discriminants

In matrix form, the equaticns for the two surfaces are

urfaces P and § intersect,
curve" of the
<
of a parameterization surface, which will be used extensively later on.

If the two surfaces do not intersect, then none of the real sur-

faces of the pencil intersect. In addition, the pencil contains scme

.

surfaces, and these may be among those listed as INVALID in

represents the same surface as P for any real non-zerc scalar
1/a, lim (1/a)(Q-¢P) = 1lim (Q/a) < P = P, which is equiva-
Q>




The general form for a member of the pencil of P and Q is given by

R(a) = Q@ - aP. (27)

(O8]
n

Classification of Pencils

One may classify pencils according to the classification of the
simplest surface in the pencil. If the pencil has a base curve, then
the base curve (a QSIC) has the same classification as its pencil.

If, for some o, R(c)has rank one or iwo, then R(a) represents

lane or pair of planes. This pencil is called "planar".

)
=
o
o
o
'y
w
Lo}

Failing this, if, for some o, R(®) has rank three, the pencil is

"non-planar singular".

If R(a) is never singular, then it always has rank four, and the

pencil is non-singular.
Two surfaces do not intersect if one of the following occurs:

1) For some velue of ¢, R(a) is INVALID; or

1]

L]
O
fu
O
()
w0
3
t
[
3
cr
(1]
2]
0
(4]
0
t
w
(@)
3
®
W
(o)
~—

2) Bither P o

a C

3.3 Determining Whether a Surface Intersection 1s Planar or Singular

If, for some wvalue of o, R(a) has rank of two or less, then the
S

encil is planar. As Woon has pointed out [Woon 1970, pp. 34-36], this

He]

occurs when two conditions are met for the same value of a:

(1) Det(R(a)) = 0; and

(2) The ‘sum of the 3 x 3 principal minors of R(a) vanishes. This
may be expressed as: D,(R(a)) = 0.

If condition (1) is met but condition (2) is not, then the surface

is non-pleanar singular.

1
|
1




= 20 . 1

3 3.4 Non-singular Pencils i

If R(a) is never singular, then the pencil is non-singular.

The Appendix demonstrates that a non-singular QSIC must lie in a

hyperbolic paraboloid.

i idiee
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IV. THEORY OF PARAMETERIZATION

In this section, methods of parameterization are discussed. The
parameterization is done in & u~-v-w cocordinate system. A congruence
transformation is then used to transform point coordinates into the

x-y-z system. The parameter is denoted by t.

L.1 Parabola

Suppose we have a perabola of the form Au? + 2Hv = 0. Taking
m = -A/2H, we have v = mu?. The parameter equations are
0=t v = mt2. (28)
L.2 Ellipse
Suppose we have an ellipse of form Au® + Bv? + X = 0. Teking

ru = y-K/A sand rV = Y-X/B as being the semi-axes, we have
ol w2 E

= g L B

o

o+ 1-t2
LR v 8 and (e dre b W (29)

This form is to be used only -1<t<+l, in which case v will have
only positive values. (A more complete method is given in section 4.4.)

This parameterization is well-behaved for values of t within the
range [-1, +1]. That is, if ds = /au? + av® , ds/dt does not vary too

much if T and r are of the same order of magnitude.
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L.3 Hyperbola

Suppose we have a hyperbola of the form Au? + Bv? + K = 0.

Taking P VX/A and ¥ " V-K/B, we have

= ——227 r v = LIE; r (30)
e n’ T—£€ v

for -1<t<+l.

A hyperbola has two disjoint parts. This parameterizetion gives
only one of them the one for which v>0.

In contrast to the parameterization of the ellipse, this form is
not well-behaved. At values of t approaching %1, small changes in t
result in large changes in u and v. However, the hyperbola is then very

close to its asymptotes and is practically a straight line.

L.4 More Complete Forms

For central conics (ellipses and hyperbolae), the following modifi-
cations may be used

Select a parameter t' which takes on the values from -2 and +2
inclusive for ellipses. For hyperbolese, the values -2, 0, and +2 are

excluded. )

o t' > 0, we have Tt 2 ¢' =« 1 and @ = #*1;

2t _ 1-t?
u = OT:TY Tyt = OE:ET rv. (31)
and hyperbolae
2t 1+t 2 :
Uus o=y r ; v = 0 r. (32)

i=T d l-t*

v

|
|
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Since for an ellipse,u and v should be periodic functions, we can
set up a parameter t'", which is normalized to t' by adding or subtract-

ing multiples of four, such that t' is in the range [-2, +2].

4.5 Non-planar Intersections

The parameterization of planar intersections is described above.
For non-planar intersections, the curve lies in a quadric surface which
has a2 "base curve" which is either a line, a parabola, a hypertola, or an
ellipse. This base curve may be a cross-section of the quadric surface,
in a plane perpendicular to the main axis. There is one set of
straight lines, (one line passing thru each point of the base curve)
such that each line lies wholly in the guadric surface, and every point
on the gquadric surface lies on cne of these lines.

One uses parameterization to select a point on the base curve and
its corresponding line. By solving a quadratic (second-order) equation,
one can then find the intersection of the line with any other quadric

surface. In this manner, all the points of the QSIC(s) may be found.

SPECIAL NOTE: THE FOLLOWING ALGORITHM HAS NOT BEEN IMPLEMENTED, AND IS

PRESENTED ONLY AS A GUIDE TO A FUTURE IMPLEMENTATION.

- s mme o e
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V. DATA NEEDED BY THE ALGORITHM

The algorithm needs the following input information in some form:

(1) For esch object, it needs to know the dimensions of the "object

box", which is a cube or rectangular parallepiped in which the object
is contained, as well as the resolution and vector lengths which will
be used.

(2) Surface e

Q
£2
m

tions must be xnown for each surface. These may be

Dresented either as ten coefficients (in the form of egq. (1)), or

a) The type of surface (ellipsoid, hyperboloid, cylinder, etc.).

(=5

b) The lengths of radii, semi-axes, etc.
c) The orientation and displacement from the origi
An interactive graphics terminzl could be used for specifying a

surface and then manipulating and distorting it to suit.

(3) 2ounds must be specified for each quadric patch in the same manne

urface intersections must be specified., For each intersection

the user must specify to the slgcritnm the two intersecting patches,
the multiplicity of the intersection (how many disjoint parts it has),
and whether it is to be a "smooth" or a "sharp" intersecticn.

.

A "sharp" intersection abruptly separates twc surfaces, providing
a clear edge which can be seen if vieswed from a preoper angle.
"

Smooth" intersections are used when several quadric patches are

used to aprroximate a single, higher-order surface. These are not

e L S




included in drawings unless they occur along limbs. Often the first
derivatives will be continuous across a smooth intersection. If one
wisned to approximate a torus (donut) by using patches of ellipsoids,
hyperboloids of cne sheet, and cones, smcoth intersections would be
used.

One usually specifies intersecting surfaces as bounds for each
other. However, if there is a smooth intersection with a continucus
derivative, then it may be difficult to tell whether a point is
on one side of a boundary or the other. Therefore, the program should
automatically ccmpute, for every smooth intersecticn, another surface
he vencil of the two intersecting surfaces. This surface will

an auxiliary bounding surface. It should meet both intersect-

aces at a sharp angle.
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VI. CLASSIFYING SURFACE INTERSECTIONS

Consider two intersecting surfaces P and Q. If either is planar,
then the intersection is planar. The algorithm described in section
VII will apply in these cases.

If neither of the two intersecting surfaces is planar, then one
must find the "simplest" surface of the pencil, according to the list
of Table III. The simplest surfaces are those in which the subtdiscrim-

inent is singular. We first solve the equetion:

det(Ru(a)) = det(Qu-aPu) = (6 (33)

=

n créder to insure that this has at least one real root, we will dis-
allow the case where !Pul is singular znd |Qu| is non-singular. (IF

s of (at most)

1

this should happen, we interchange them.) Equation (3

w

third order. This may be written as:

-det(Pu)a3 + K2a2 - K.a + det(Q ) = 0, (34)

with K, teing the sum of the determinants of the combinations of two

columns of Pu and one of Qu, and Kl being the sum of the determinants of the

combinations of one cclumn of ?u and two columns of Qu.
Once a single root is found, synthetic division may be used to find

the other real roots, if they exist.

det(R(a)) = 0 and the sum of the 3 x 3 principal minors of R(a) also

varishes. (This last condition may be expressed as: D,(R(a)) = C.)
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These conditions may cnly occur when det(Ru(a)) = 0. Therefore, each
roct in @ is tested to see whether R(a) is planar. If any R(a) are
planar, the simplest is then chosen as a parameterization surface.

If none of the R(a) so far tested is planar, one checks to see
whether any one is a hyperbolic paraboloid. If one is, then it is used
for paremeterization (see Section 8.4). If not, then one of them may
be a cylinder, which would then be used for parameterization.

If, at any point, an INVALID R(a) is found, then the two surfaces
édo not intersect.

Teble III ccntains a list of the surfaces which may be used for

parameterization. The simplest surfaces are near the top of the list.
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FLATAR LINE (Imaginary Intersecting Planes)
Single Plane

Coincident

Intersecting Planes
JON-SINGULAR: Hyperbolic Paraboloids
NON-PLANIAR Parabtolic Cylinder
SINGULAR:

Elliptie Cylinder

Hyperbolic Cylinder

Cone




VII. PLANAR INTERSECTIONS

s planar, if, for some o, det(R{(a)) = 0, and
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First one must determine the nature of the intersection (according
tc Teble I) and transform the planar surface intoc cancnical form. Then

one selects some surface of the pencil, other than R(a), and applies
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vlanes, the plane is the u-v plane in the space of the cancnicel form.

Cne tzkes the discriminant of the other surface, cancels out the third

discriminant against Table II to find the nature of the intsrsection.
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¢) If the intersecticn lies in two planes, one must factor the diplanar
intersecticon into its two constituent planes. If there are two parallel

vlanes, we have an egquation Au® + K = 0, with AK < 0, which is factored

If there are two intersecting planes, we have Au? + Bv? = 0, with
-~
AB < Q, which is factored into /]A|u % /[B[ v = O.
Then, each of these planes must be put into single-plane canonical

form, making the appropriate transformation to the cther surface for

inally each plane must be processed separately, as &bove.
If it should heppen that a planar intersection consists of two

1

traight lines, these must be processed separately.

.2 Parasmeterization

,

After the nature of the planar intersection is found, cne has

(unless the intersection was a LINE), a ccnic section in the u-v-plane.

conic. For a parabola, the v-axis is the axis of symmetry. For a
hyverbola, the u-axis separates the two parts. One must, as alwsays,

outlined in secticen IV.

v

Wnen actually tracing pcints, one is in x-y-z space, not U=-v-w
space. Therefore, it would be more efficient to get the x-y-z
coordinates of & point directly, without having to trans

out taking up primary memory space to store the

transformation matrix. The form outlined below accomplishes just this.

S
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x 2 % %
y=(at?+bt+c )/S+ad (35)
J ¥ ¥
z=f{at?+bt+c )/6+4
Z Z %
where § =1 for a parabdla or a line;
2 CURe 5
g =1+t for an ellipse; and
2 y
§ =1 -1t" for a hyperbola.
Using this form, cone may perform the transfcrmation once, whil

Table IV contains a FORTRAN rocutine to do this.

ot all of a Quadric Surface Intersection Curve (QSIC) is part of
an edge. Some or all of a QSIC may be out of bounds for cne cor both

urfaces. Since, for planar intersections, each
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value of the parameter represents a unique point, the endpoints of an

edge ma2y be represented as parameter wvalues.
Each QSIC has a multiplicity, which is the number of distinet edge

example of tais would be two cones, back-tc-back, with a thin circular

cylinder dividing their intersection intc two parts. This intersectic
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Note: In the following program, x, y, and z are X(1), X(2), and X(3);
a_is A(1,x), b is A(2,x), c is A(B,x), and d4_ is A(L,x);

t is T, and t' and t" are TP.

SUBROUTINE PLANAR (TP, A, ITYPE, X)
C TP IS THE PARAMETER, A IS THE COEFF. MATRIX, &
C X IS THE RETURNED CO-ORDINATE LOCATION.
C ITYPE = -1 HYPERBOLA
Cc 0 PARABOLA OR LINE
c +1 ELLIPSE
REAL A(4,3) X(3)
FF C(ITYPR}2. 30
CENTRAL CONICS
1 TP = TP - L«INT(TP+3IGN(2,TP))/L)
2 T = TP - SIGN(1.,TP)

: DENOM = SIGN (1. + ITYPE#T%T 6 TP)
i GO TO L
: C-- PARABOLA OR LINE
8 e QP
DENOM = 1.
COMPUTE
b D05 I=1,3
5 X(I) = (A(1,I)#T#T+A(2,I)#T+A(3,I))/DENOM + A(L,I)
RETURN ;

END

Table IV. FORTRAN routine for solution of eaq. (35)




Figure 1: one for each

Intersection. \\\

rather two separate intersections of multiplicity one, as the two parts
of the cylinder are two separate patches (see Fig. 1).

A QSIC will have one pair of parameter limits for each unit of
multiplicity.

If a quadric surface intersection is a point or pair of points,
then any points which are out-of-bounds must be rejected. Otherwise,
parameter limits. must be found. The program must find one or more ranges
of the parameter for which the parameter is continuously within bounds
for both of the intersecting surfaces.

First the program establishes a list of bounding surfaces for the
QSIC. Then a scan is made of the possible values of the parameter,

searching for a value whose point is within bounds.

For an ellipse, the parameter is taken from -2 to +2 (in t' form),
with parameter increments of about 0.l1l. For a parabola or hyperbola,
the limits are the values of the parameter at the limits of the object 1

box, but the increments for the hyperbola should be about 0.1 also.
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As this is done, the value of qb(;) = ;Qb ;T for each bounding
surface Qb is saved. If no point satisfying the bounds is found in the
initial scan, then one may look for “dipsh*in the values of the
qb(;)'s. This way one may find a small intersection which was over-
looked before. Interval halving is performed at each dip to see
whether it results in a previously missed small intersection.

Once a point within bounds is found, one can begin looking for the
edge's endpoints. Basically, this is tracing the edge, for different
values of the parameter, until a point out of bounds is found. (Often
the first point within bounds has an already-traced neighboring point
out of bounds.) When such a pair of points is found, one may use
interval halving to locate the precise end point. If it is known which
bounding surface function changes sign to cause one point to be in
bounds and the other out of bounds, one may use Newton's method on that
"critical" bounding surface function.

If one is looking for another edge on a particular plane and cannot
find one within the parameter values not included in the range of the
first edge, it is possible that the first edge is really both edges,
with a small gap in between. Then one should go back, checking all
points where the value of any bounding surface function changes sign,
to see whether these points are endpoints of such a small gap. If
none is found, it is likely that the user made an error.

Special note on ellipses: If there are no bounds on an ellipse
that cause parameter limits, then the limits are <-2,+2>. If the

point t' = -2(+2) is in the middle of an edge, using the t" format

allows one to extend paramater limits above +2 or below =-2.

* An extremum towards zero.
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VIII. NON-PLANAR QSICS

A QSIC not contained in a plane is non-planar or twisted.

Appendix A shows that such a QSIC is always located in a quadric surface
with at least one set of non-intersecting straight lines passing through
every point on the surface.

This section shows how to utilize this property to parameterize a
non-planar QSIC. Given a parameter, one may find a point (or pair of
points) by solving an equation of no more than second-degree. Since
the quadratic equations is easy to solve, this method gives the exact
location of each point. When there are two points for one parameter
value, then one is associated with an increasing parameter, and the

other with a decreasing parameter.

8.1 Basic Technigues

A non-planar QSIC is contained in a quadric surface which shall be
called the "parameterization surface". It is one of the surfaces of
the pencil of the two intersecting surfaces. Table III contains a
list of these.

Selecting the R(a) which is "easiest" to handle, we find the proper
parameterization for its base curve. For a cylinder, the base curve is
a cross~section of the parameterization surface, in a plane perpendi-
cular to the main axis.

Given a parameter one finds the corresponding point on the base

curve using eq's. (32). These coordinates are referred to as X, yo,

and Zg-
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One then selects any member of the pencil other than the para-
meterization surface. Usually this will be P or Q. One finds the
straight line in the parameterization sufface which passes through

point (xo, Fes % ), and solves for the intersection of the line and the

0

other surface. This will be a second-order equation.

Suppose Yx’ Yy’ and Yz are the direction cosines of the line

corresponding to the base curve point Xgs Yos 2 The location of any

0"

point on the line is given by

x= X, *AE
S T (36)
2= 2, *+Y,S

where s 1is a secondary parameter. If the other surface is surface Q
and has an equation of the form of eq. (1), then the second-order equa-

tion in s is of the form:

as?+bs +# ¢ =0 (37)
where

E=qY Ty * QY. AN AN, AT

1 X 2 ¥y 3 2 W X'y sy 2 6 2 X
b= 29 x + 2q +2q z + X Y + ) + +z v )

ql on ‘2onY qa oYZ qu( on onx qs(onZ on

+ + ¥ + +
qs(onx xoYz) B e T

c =

2 2 2
X+ qy +agz° g% +qye +9gz2x 4
=5 0 q2 0 o Wl oyo 570 0 qs 0 70

0

+ +qz + = q(x z )
ey, *tase *aq a( Y402,
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The quadratic discriminant (not to be confused with the discriminant
matrix of a surface) is <D = B* = bac. If T < 0, there are no real
roots in s, and the corresponding value.of t is actually invalid.

If D = 0, then there is one root in s. IfD > 0, s has two real
roots. There are as many intersection points along the line as there
are roots in s. When tracing a QSIC, one uses the larger value of s
when the parameter is increasing, and the smaller value of s when the

parameter is decreasing. This is discussed in more detail in section IX.

8.2 Cylindric Intersections

For cylindric intersections, the line through each point is parallel
to the axis of the cylinder, which is the w-axis. One uses the substi-
tution

gl e T o es
with (e e e)=(001)7F.
ol T u
The cross section of a cylindric intersection may be taken anywhere

along the main axis but the u-v plane is simplest.
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8.3 0SICs Lying in Hyperbolic Paraboloids

A hyperbolic paraboloid has two sets of straight lines which lie
totally in the surface. These are called reguli. Each regulus is a
; set of mutually skew lines, and each point on the paraboloid is the
intersection of one line from each regulus.
{ To find the coefficients of parameterization, one takes the hyper-
bolic paraboloid P and the other surface Q, and transforms them both by

a congruence transformation so that P is in canonical form:

0

-B
(38)

o O o »
&4 O o o
(oo AL - POIRE = WS =)

If A is negative, reverse the sign of every element in P.
Now transform both P and Q by the following valid transformation,

which is a product of a rotation and a scaling transformation. It will

distort the surfaces but not change their nature:

V172K ~/1/2B 0 0
V1/2h V1728 0 0

0 0 -1/J 0

0 0 0 ak

The result is that Q is in the form

T

-1

S & P o
o O o ¢




-

This is equivalent of the equation (in u-v-w space) uv=w.

If t is the

primary parameter and s is the secondary parameter, ust, v=s, and w=st.

In the x-y-z coordinate system, we may express the coordinates in

terms of equations (36) as such:

x = (cxt + dx) + (ex + fxt)s

= et +d + e + £ tils
y (y y) (y y)
z =

(et +a) + (e +£t)a
z z z z

I F 1is the transformation matrix from u-v-w space to x-y-z space,

then the co-efficients are:

(e, (o (o 0

X Yy 2

e e e 0

b'd y A S
£ 5 £ 0

572 Yy 7

d d d 1

X ¥ Z

(39)
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IX. PARAMETER LIMITS AND QSIC TRACING

9.1 Basic Parameter Limits

For planar QSICs, parameter limits are defined in a two-part pro-
cess. In the first part, the basic limits are found. For an ellipse,
the basic limit string is <-2.,+2.>. For hyperbolae and parabolae,
which extend to infinity, the basic parameter limits are those defined
by points where the curve meets the limit of the object box.

Once basic limits are found, the bounded parameter limits are
found, using the process outlined in section T.3.

For non-planar intersections, finding the basic parameter limits
is more complicated. These limits are the limits of the range of values
of the parameter such that both the following conditions are met:

a) If the base curve is a line, a parabola, or a hyperbola, the line
corresponding to the parameter must not lie totally outside of the
object box; and

b) Equation (37) has at least one real root. This is equivalent to
saying that the quadratic discriminant D = b2-kac is non-negative. One
would find those ranges of the parameter t' for which D > 0. The limits
of these ranges will be values of t' for D = 0. Of course, if for all
values of the parameter t' satisfying condition (a), D < 0, then there
is no intersection.

Once the basic limits are found, basic limit strings may be set
up. For non-planar intersections, limit strings have three elements,
not two. For basic parameter limits, the first element of the limit
string is one of the limits, the second element is the other limit, and

the third element is the same as the first.
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9.2 Tracing the Edge to Find Bounded Parameter Limits

One next traces the edge within the basic parameter limits. The

limit string is <t,, t t,>, with t, = t,. First, one traces from t,

2% ¥3

to t,, and then one traces in the reverse direction from t, to t; = t,.

The two traces use opposite "radical signs" in the solution of eq. (37).
In any trace from ti to ti+1’ if the parameter is increasing

(t, < t...), one solves eq. (37) with a positive radical sign

2 i+l
s = (-b+/b?-Lac)/2a (b1)

If the parameter is decreasing (ti > ), one solves it with

ti+1

a negative radical sign
s = (-b-vb%-Lac)/2a (42)

This implicitly gives the radical sign, without it having to be
specified explicitly. The radical sign is the "Boolean parameter'
mentioned earlier.

As one is tfacing the curve, one looks for parameter bounds just
as in section 7.3. If the point corresponding to t' = t, is in bounds,
there is a bounded parameter limit string with t, as its second element.
All other bounded parameter limit strings would have two limits. Since
limit strings for non-planar surfaces should have three elements, the

second element may be repeated. Whenever ti = 1° there is no trace

ti+

performed.
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X. LIMBS

10.1 Defining Limbs

Since quadric surfaces are generally not flat, it is likely that,
from a particular viewpoint, the quadric surface may "fold in back of
itself". The locus of points where this happens is the limb. This
terminology is due to [Comba 1968]. A virtual edge is a segment of a
limb.

More precisely, the limb is the locus of points on a surface where
the normal to the surface is perpendicular to the line-of-sight. These

points must satisfy both these conditions:

qlx,y,z) = 0 and p=s.grad ¢ = 0 (L43)

-
where s is the line-of-sight vector from the object point to the view-
——
point; and grad q is the surface normal, which may be expressed as a
column vector:
2q,x + q. ¥ + q.2 + q,
—lpe

grad q = 2q,y *+ q,X + q5z + Qg (Lb)

29,2 + q.x + q.y + q,

10.2 Orthographic Projections

For simplicity, let us assume that the object has alresady been
translated and rotated so that it is now in the picture space. We shall
call the axes x, y, and z. For othographic projections, the viewpoint is
considered to be on the x-axis at infinity. The line-of-sight vector is,

therefore, along the x-axis and its normalized value is (1 O 0). From
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eq. (43) we have

> —
S.

p=s.gradq =29x+gqy+ X TR 0 (L5)

This is a plane. It is called the “"polar plane of the surface". It

does not exist if ql = qb = q6 = 0. (A paraboloid whose axis is the

x-axis is an example of a surface without a polar plane.)

10.3 Perspective Projections

Woon did not discuss polar planes for perspective drawings, and it
happens that they do require a different equation than orthographic
drawings do. Assume that the viewpoint is on the x-axis, a distance D
from the origin. We make the simple transformation x' = x - D, putting
the viewpoint at the x'-y-z origin. The line-of-sight vector thus

-
becomes s = (=x' -y -z).

Therefore, the equation for the polar surface is

T TR =

p = s.grad q

= -2q'1x2-2q2y2-2q322-2q'kxy-2q5y2-2q'szx'-q'7x'—qey-qu=0 (L6)

By substituting twice the value of q(x,y,z) from eq. (1), we have

p = -2q'(x',y,z) + Q' x' +qy+aqz+ag =0 (47)

Since all points on the limb must be on the surface, with

q'(x',y,z) = 0, the above equation reduces to:
p,=a'x+ay+aqz+2, (L8) |

vhere p_ = 0 is the equation of the "virtual polar plane".
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10.4 Point Orientation

The function p(x,y,z) has another use besides acting as the equa-
tion of the polar plane. It also indicatés the orientation of a point
on the surface. If p > 0, the angle between ; and the normal is less
than 90°, and so the point is front-oriented and potentially visible.
If p < 0, then the angle is greater than 90° and the point is back-~
oriented and, therefore, invisible. Of course, if p = 0, then the
angle is 90°, and the point is "orthogonally" oriented and is on a
limb.

For perspective drawings the function p, may be used in place of
P, since all points that ever need to be tested by the value of p are

on the surface anyway.
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XI. HIDDEN-LINE DETERMINATION AND PICTURE DRAWING

This algorithm is primarily desgined-to handle QSICs, with hidden-
line elimination a secondary consideration. The methods described here

may be considered "brute-force" methods, but they should work well.

11.1 Preliminary Processing

Each quadric patch is considered, and, if it contains a limb within
its bounds, it is divided into two or more faces at the limb. If there
is no limb, then the patch is a single face.

Each face is tested to see whether it is a front-face or a back-
face. As Woon pointed out, [Woon 1970, p. 26], a face has the same
orientation as any point on it.

For an edge to be visible at least one of the faces adjacent to it
must be a front-face. This algorithm does not use Loutrel's complete
classification system [Loutrel 1970] because it is dependent on whether a
surface intersection is obtrusive or intrusive, and a QSIC may be both.

The parameter limit strings of an edge may have to be changed. If
an edge is entirely the intersection of two back-faces, it will not be
displayed at all in a hidden-line eliminated drawing. If it is the
intersection of two quadric patches with limbs, some of it may be the
intersection of two back-faces and be hidden, while the rest of it may
be potentially visible. The limits must be appropriately reset so that
only potentially visible parts are included.

At this point, two comments are in order. First, limbs will now
be considered to be like any other intersection, with parameter limits

and coefficients. Second, the following discussion is for orthographic
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drawings only. For perspective drawings, one must substitute "y/x"

" " n_nmn

Wypt® for "z", wherever these appear.

for "y" and "z/x

For each potentially visible edge, £he y- and z-extremsa should
be computed. (The x-extremum may also be computed.) This may be done
by tracing through an edge, looking for places where each coordinate
has an extremum. This will happen when the sign of the increment of
the coordinate changes. This method is like looking for Y3 psils

For each front-face, the extrema of the extrema of the associated

edges are taken. Thus we have both edge extrema, and face extrema.

11.2 Tracing an Edge

First, for each edge one must find those front faces which may
hide all or part of the edge. This is done by using the edge extrema
and the face extrema. A face may hide an edge only if the y-extrema
and the z-extrema overlap. (If x-extrema are calculated, the nearer
x-extremum of the face must be closer to the viewpoint than the further
x-extremum of the edge for that edge to be potentially hidden by the
face. )

One is now ready to trace the edge, simultaneously detecting which
parts are hidden, and drawing the edge. As soon as one is sure that the
vector from one point to the next is completely unhidden (hidden), one
may draw (skip) that vector. Thus both hidden-line detection and edge
drawing occur as parts of the same process.

There are two methods of scanning an edge and they are outlined

below. Either may be used.
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The "tight" scan uses small vectors. As each point is scanned,
one computes the line of sight from that point (test point) to the
vantage point. One then computes the inﬁersection of this line with the
quadric surface associated with each front face which may hide the point.
This is a second-order equation, similar to eq. (37). If there are no
roots, the point is not hidden by that face. If there are two roots,
one of them corresponds to a back-face, and, since a back-face cannot
hide a point, this root is discarded.

One takes the (remaining) root, and checks to see if the correspond-
ing point is within bounds for that surface patch. If it is, the point
is hidden if the intersection point is between the test point and the
view poinﬁ. If the intersection point is out of bounds, or is further
from the view point than the test point, then the test point is tested
against the next face. If no face hides the point, then it is visible.

If one point is hidden and one of its neighbors is not, then there
is some point between them where the edge becomes hidden. By using
interval-halving, one may locate this point.

This method uses many small vectors to insure that a small hidden
(unhidden) section of the edge is not considered visible (hidden). The
disadvantage of this method is that many points have to be inspected for
each edge.

The "loose" scan uses larger vectors but needs to store a good deal
of information about each point. This is all information that would

have to be computed anyway.
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For each front face which could hide part of the edge, a list called
the "state list" is made of the values of the following functions
1) The quadratic discriminant (D = b? - Lac) of the second-degree
equation of the face's surface along the line of sight, and
2) The bounding surface function qb(xi,yi,zi) of each bounding surface
of the patch on which the face is located, where xi,_yi, and zi are the
coordinates of the intersection point.

If there is a change of sign of any function in any state list, then
it is possible that, at some intermediate point, the edge beccmes hidden.
One may use interval halving the locate this point. It is also helpful
to look for "dips" in these functions.

The "loose" scan gives an effective resolution which is much better

than the vector length actually used.

11.3 Vector length

In using the "loose" scan, one may use a variable vector length.
Ef ; and a are two adjacent vectors, then [;ixlal = I;llalsin pq. By
trying to equalize l;lxlal one should get an optimal balance between
having fewest vectors (requiring least processing and/or storage space)
and making sure no angles are too sharp. Using this equalization, the
parts of a curve with the greatest curvature will have the shortest
vectors and the largest inter-vector angles, while nearly straight curves
would have long vectors and small angles. However, because of the
requirements of the algorithm in looking for sign changes and "dips",

each edge should have at least two or three vectors. It might also be

good to have an upper limit on vector length.
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One equalizes the cross product by using a variable parameter incre-
ment. Suppose we have a lower limit (Li) and an upper limit (Lu) on the
cross product L IS]xIEI. These may be in a ratio of 1:1.5 or 1:2.

If ﬂc falls below L , then one increases the parameter increment. If
i

nc rises above Lu, then the parameter increment is reduced.
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XII. CONCLUSION

The chief advantages of this algorithm are (1) it is a complete
quadric surface algorithm, allowing use of all real quadric surfaces;
(2) it allows "smooth" intersections to approximate higher-order surfaces,
and (3) it may be fast enough to be used in conjunction with a shading
algorithm such as outlined in [Phong 1975].

Since this algorithm distinguishes limbs, sharp edges, and smooth
edges, each can be appropriately handled by the shading algorithm. This
can include explicit handling of the mach band effect, specular reflec-

tion, and transparency [Metelli 197k].
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APPENDIX 1 - PROOF OF THEOREM

In this report it has been assumed that all QSICs lie either in
singular quadric surfaces or else in hyperbolic paraboloids. The follow-

ing is a proof of this conjecture.

DEFINITIONS

A quadric surface is positive, singular, or negative if the deter-

minant of its discriminant matrix is positive, zero, or negative respec-
tively. A pencil of quadric surfaces is singular iff it contains at
least one singular quadric surface, and is non-singular otherwise. A
surface intersection (QSIC) is singular if the pencil of the two inter-
section surfaces is singular, and is non-singular if the pencil is
non-singular.

A congruence transformation is a non-singular transformation such

that the upper-left 3 x 3 submatrix of the transformation matrix (called

the rotational part) is orthogonal, and the last column of the matrix is
(0001).T

A scaling transformation is a non-singular transformation of the

form:
a 000
OB OO
00y O
0006 with &, By Y5 O # 0.

A valid transformation is the product of congruence and scaling

transformations.
Notice that valid transformations do not change the type of surface

the discriminant describes, although scaling transformations may distort

such a surface.
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DEFINITION:

A PARA is a quadric surface with a singular sub-discriminant.
PARAs include all singular quadric surfaées except cones, as well as
elliptic and hyperbolic paraboloids.
LEMMA 1:

The pencil of any two quadric surfaces contains a PARA.
Proof: Suppose we have two quadric surfaces, P and Q.
[Case 1: Either P or Q is a PARA. The hypothesis is satisfied.
[Case 2: Neither P nor Q is a PARA. The equation:
det(Ru(a)) = det(Qu-aPu) = 0 is of the form:

-det(Pu)a3 + xza-’- -Ka+ det(Q ) = 0,

with K2 and Kl being the sums of the determinants of combinations of the
columns of Pu and Qu. Because det(Pu) # 0 and det(Qu) # 0, this equation
is of third order and no less. Since a third order equation must have
at least one real root, there is at least one value of o such that
det(R(a)) = 0. This R(a) is, by definition, a PARA.
LEMMA 2:

Any pencil of a positive quadric surface and a negative quadric
surface is singular.

Proof: The equation det(R(a)) = det(Q-oP) = 0 is equivalent to
det(P)a* - Kaaa + Kzaz - K o + det(Q) = 0, where K , K , and K are
sums of determinants of combinations of columns of P and Q. If P is
positive and Q is negative, then det(R(0)) = det(Q) < 0; while for

a =+t o det(R(a)) + + ©» > 0. Because R(a) is a continuous function,

there must be at least two values of @, one positive and one negative,

for which R(a) is singular.
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LEMMA 3:

One may apply any valid transformation to any pair of gquadric sur-
faces without affecting the roots of the equations: det(Q-0P) = 0 and
det(Qu-BPu) = 0.

Proof: Suppose we have the valid transformation S and its rotational
part, S . Both S and S are non-singular. If P S-l, then Zu = S;l,
and both Su and Zu are non-singular.

Det (SQZ-aSPL) = det(S(Q-aP)L) = det(S) det(Q-aP) det(Z)

= det(S)det(Z)det(Q-aP) = det(Q-oP). Similarly for Qu,Pu,Su,Zu and B.
LEMMA U4:
The arbitrary elliptic paraboloid P and the arbitrary quadric sur-

face Q may be expressed, in some transformed space, as:

Q@ o v »
m M w O
G4 QO @=m O
- LTI - - ]
» O o +
< O K+ O
H o o o
o H < N

Proof: First, let us select the axes such that the z-axis is the main
axis of the paraboloid P, the origin is located on P, and the x- and
y-axes are the axes of the ellipse which the cross-section of P. This

puts the surfaces' discriminants in the form:

P"

Q = O P

G QO = o
[}

M o o w

< O B o

N O O O

O BN < X

oo w O
A G om Q@
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If S is negative, reverse the sign of every element of P".

Now, use the following scaling transformation on both P" and Q":

\
¢ \

i AR o o

0
0 i/ T 0 0
0 0 177 0
0 0 0 1
This gives us:
Q' = P' =

Q = O P
o 3w g
g Q =m
A 4 -m Q@
“ o o H
- o H o
» o o o
o H K X

\
\

We now apply the following rotation (which is a congruence trans-

formation) to both Pf and Q':

-M

L 0 0 2 5
Lo o with Ly + My =1
L . E
0 ik =0 and M F
(3 I (s !
Using this transformation yields:
A D 0 ¢ i 8.0 X
g it 3 B K a9 2 0
0 ¢ & @G 0
G J K X Sl
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LEMMA 5:

The pencil of two elliptic paraboloids is always singular.
Proof: Suppose we have two elliptic par;boloids P and Q, in the form
given in LEMMA 4. There are some conditions that are imposed on the

elements of Q, as follows:

g @ X A D O G
01 0y aaf2 B E B
0 g8 1 OEER CRT
X ¥ X @ G H J K
det(Pu) = 0 such that: det(Qu) =80
T (P) >0 T (Q) > o.
2 2

The two conditions for Q are:
det(Qu) = ABC - CD?® - AE? = 03

Tz(Q) = AB + BC + AC - D? - E? > 0,

[Case 1: C=0: det(Qu) O only if A =0 or E = 0.

[Case 1la: C=E=0

. S 5 [ R o
DB O H
S* lo o o 2
G B J K
Obvicusly, det (Q=JP) = 0.
[Case 1b: A =C = 0. 5D 0 o
D B
&b E H
O E O J
& B 5 K

Now, T (Q) = - D2 - E? < 0. However, one of the conditions for Q to be

an elliptic paraboloid is that 'I‘2 > 0. Thus, case 1lb never occurs.

T e el N i el i

- s
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or simplicity, we may divide every element in Q by C.

,-—,
Q)
)
%)
®
n
O

-
]
vy

This does no* change the surface. §

Q o v »
ol s R0 Ji
& = ot

Ty

f Now, det(Qu) = AB - AB® - D 20, 80 D = =/A(B-E" ).
' For D to be real, we must have:
I
&(B-E*) > 0 (condition 2)

We also have: TZ(Q) = AB * A &8 ~D* « B2 > 0.

Since: D? = AB - AEZ, we have:

2

T ——

T(Q) =A + B - E2 + AE (condition b)

Now, tzking the pencil of P and §: R{a) = {(Q~0P); solving

det(R (a)) = aet(Q —a?u) = 0, we get:

o
(¥

- det{P Ja? + a? - (A+B-E?)a + det{qQ ) = 0.
u u
Since iet(?}) = det(Qu) = 0, when we reject the rocot a = 0, we have
the remaining root: o = A + B - BE2. For this a, R(a) is a PARA, by
- ]
definition.

d.

4

{Case 2a: If R(a) is a singular PARA, then the hypothesis is satisfi

[Case 2b: If R(a) is not a singular PARA, it must be a paraboloid,

‘ either elliptic or hyperbolic. We will assume that it is elliptic.

Substituting the roct of ¢ as sbove, we have:




O,

2
T - (E2-a)(8%-B) +28% - (A+B) - AB + AE? > 0;
‘ T - B2(g%-B) + B> - A -B > 0; or
-T = E*(3-FE?) +A+B-E2 <0,
2

i Now, taking 8 = B - 32, the three conditions are:

: AB >0 (condition a)

‘.

f A+ B+ A% =a(1+8%) + B >0 (condition b)
2 = S

i 28 + A + 3 = A+ B(2+3%) < 0 (condition ¢)

|

| By (a), if B8 < 0, then & < 03 if & < 0, then B < 03

|

| 3

| if B > 0, then A > 03 if A > 0, then B > 0.

i

|

f By (b), i£ 8 < O, then A > 0; if & < 0, then B > O.

IZ ’ \

' By (e), 1£ B > 0, then A < 0; if A > 0, then B < 0.

h

{ These conditions are inconsistent; hence R(a) cannot be an

i ellivtic paraboloid and must be hyperbolic paraboloid. Because this is

a pencil of two negative elliptic parsboloi

[e1}
(0]

and a positive hyperbelic

'g

paraboloid, by LEMMA 2, the pencil and its associated QSIC are

ingular.

n

The pencil of two negative quadric surfeces is
Jrcof: Suppose we have two negative quadric surfaces P and Q. 3By Lemma

1, the vencil contains a PARA. If the PARA is singular, then so 1s the

[
‘g

pencil and the QSIC. If not, then tne PARA is a paraboloid. If the
PARA is a (positive) hyperbolic paravoloid, then the pencil is singular

by LEMMA 2. 1If there is more than one PARA, then these tests mey bve

applied to each of then.
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A=G

au® + ba + ¢ = 0, we get the quadratic discriminant: 9 = b2-lLac.

1 _ For this equation, O = (A-B+E2?)? + LD? 200,
[Case 2a: IfD = 0, then D = 0 and E2 = B - A. There is one double
root, & = A, and Rank (Ru(A)) <1, so Rank (R(A)) < 3, so R(A) is
singular, and so is the pencil.
(Case 2b: If 9D > 0, then there are two roots in . Both R(a) are

PARAs. If one

[

s singular, the hypothesis is satisfied. If one is a

S

positive hyperbolic paraboloid, then the pencil is singular by LEMMA 2,

B

If one is an elliptic paraboloid, the pencil is singular by LEMMA 5.
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s singular, the hypothesis is satisfied.

If one is positive and one negative, the pencil, and, therefore, the

intersection, is singular by LEMHMA 2. If both are negative, then the

b directly. Otherwise, the PARA must be a hy




UNCIASSTFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Datas Frtered)

s ; READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMFLETING FORM
1. .REF’O‘I1 NUMBER 2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
AFGSR - TR- 76~-1161 .
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
A PARAMETRIC ALGORITHM FOR DRAWING PICTURES OF Interim
SOLID OBJECTS BOUNDED BY QUADRIC SURFACES. T T T TR T T T T
CRL - 46

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(S)
Joshua Z. Levin - AFOSR 76-2937
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
Rensselaer Polytechnic Institute o ainla e
Electrical & Systems Engineering Department . 61102F
Troy, NY 12181 9769-02
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE /r
Air Force Office of Scientific Research (NM) March 1976 -
Bolling AFB, DC 20332 T3. NUMBER OF PAGES

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report)

UNCLASSIFIED

15a. DECL ASSIFICATION/ DOWNGRADRING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reversn side if necessary and identify by block number)
computer graphics

hidden-surface removal

quadric-surface intersection curves

20. ABSTRACT (Contirue on reverse side If necessary and identify by block number)

An algorithm is described for generating two-dimensional, visible-line
projections of three-dimensional objects that are bounded by patches of
quadric surfaces.

The main task of the algorithm is the calculation of intersections
between quadric surfaces. A parameterization scheme is used. Each quadric-
surface intersection curve (QSIC) is represented as a set of coefficients

DD FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE
1 JAN 73 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. Abstract (Continued)

and parameter limits. Each value of the parameter represents at most two
points, and these may easily be distinguished. This scheme can find the
coordinates of points of even quartic (fourth-order) intersection curves,

using equations of no more than second order.

Methods of parameterization for each type of QSIC are discussed, as
well as the problems of surface bounding and hidden-surface removal.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

Gham g e e s 2ol o o



